3,016 research outputs found

    A Polyhedral Intersection Theorem for Capacitated Spanning Trees

    Get PDF
    In a two-capacitated spanning tree of a complete graph with a distinguished root vertex v, every component of the induced subgraph on V\{v} has at most two vertices. We give a complete,non-redundant characterization of the polytope defined by the convex hull of the incidence vectors of two-capacitated spanning trees. This polytope is the intersection of the spanning tree polytope on the given graph and the matching polytope on the subgraph induced by removing the root node and its incident edges. This result is one of very few known cases in which the intersection of two integer polyhedra yields another integer polyhedron. We also give a complete polyhedral characterization of a related polytope, the 2-capacitated forest polytope

    The VCG Mechanism for Bayesian Scheduling

    Get PDF
    We study the problem of scheduling m tasks to n selfish, unrelated machines in order to minimize the makespan, in which the execution times are independent random variables, identical across machines. We show that the VCG mechanism, which myopically allocates each task to its best machine, achieves an approximation ratio of O(ln n&frac; ln ln n). This improves significantly on the previously best known bound of O(m/n) for prior-independent mechanisms, given by Chawla et al. [7] under the additional assumption of Monotone Hazard Rate (MHR) distributions. Although we demonstrate that this is tight in general, if we do maintain the MHR assumption, then we get improved, (small) constant bounds for m ≥ n ln n i.i.d. tasks. We also identify a sufficient condition on the distribution that yields a constant approximation ratio regardless of the number of tasks

    Capacitated Trees, Capacitated Routing, and Associated Polyhedra

    Get PDF
    We study the polyhedral structure of two related core combinatorial problems: the subtree cardinalityconstrained minimal spanning tree problem and the identical customer vehicle routing problem. For each of these problems, and for a forest relaxation of the minimal spanning tree problem, we introduce a number of new valid inequalities and specify conditions for ensuring when these inequalities are facets for the associated integer polyhedra. The inequalities are defined by one of several underlying support graphs: (i) a multistar, a "star" with a clique replacing the central vertex; (ii) a clique cluster, a collection of cliques intersecting at a single vertex, or more generally at a central" clique; and (iii) a ladybug, consisting of a multistar as a head and a clique as a body. We also consider packing (generalized subtour elimination) constraints, as well as several variants of our basic inequalities, such as partial multistars, whose satellite vertices need not be connected to all of the central vertices. Our development highlights the relationship between the capacitated tree and capacitated forest polytopes and a so-called path-partitioning polytope,and shows how to use monotone polytopes and a set of simple exchange arguments to prove that valid inequalities are facets

    South Platte Mapping and Analysis Program (SPMAP): implementation of a user-centered decision support tool

    Get PDF
    May 2005.Includes bibliographical references

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2−c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure

    The effects of estrogen, its antagonist ICI 182, 780, and interferon-tau on the expression of estrogen receptors and integrin alphaV beta 3 on cycle day 16 in bovine endometrium

    Get PDF
    We have shown previously that downregulation of intercaruncular stromal integrin α(v)β(3 )in bovine endometrium on day 16 of the estrous cycle coincided with the antibody recognition of estrogen receptors (ER) in the luminal epithelium. In pregnancy, these changes were not observed. Our hypothesis was that on day 16 of the estrous cycle, estrogen from the dominant follicle causes a reduction in integrin α(v)β(3 )and affects ERα in the luminal epithelium. The pregnancy recognition protein, interferon-τ (IFN-τ), may prevent downregulation of integrin α(v)β(3 )and suppress ERα expression in the luminal epithelium. On days 14 to 16, heifers received uterine infusions of the anti-estrogen ICI 182, 780, estradiol 17β, IFN-τ or the saline control. On day 16, reproductive tracts were collected for analysis of integrin α(v)β(3 )and ERα. Estrogen receptor α immunoreactivity was largely restricted to the luminal epithelium in control animals. Using anti-ERα recognizing the amino terminus, estrogen-treated animals showed reactivity in the stroma, shallow and deep glands and myometrium as is typical of estrus, whereas ICI 182, 870 treated heifers showed little or no reactivity. In contrast, carboxyl terminus-directed antibodies showed a widespread distribution of ERα with reactivity detected in the uterine epithelium, stroma and myometrium of both estrogen and ICI 182, 780 treated animals. Heifers treated with IFN-τ had low ERα reactivity overall. Control and IFN-τ treated heifers had lower intercaruncular stromal expression of integrin α(v)β(3 )in comparison to estrogen and ICI 182, 780 treatments. Overall, the results suggest that on day 16 of the estrous cycle, estrogen effects on integrin α(v)β(3 )are indirect and do not directly involve ERα in the luminal epithelium. During pregnancy, interferon-tau may block ERα in the luminal epithelium but likely does not rescue integrin α(v)β(3 )expression

    University of Louisville International Travel Clinic: Pivoting During the COVID-19 Pandemic

    Get PDF

    Quark Mass Textures and sin 2 beta

    Full text link
    Recent precise measurements of sin 2 beta from the B-factories (BABAR and BELLE) and a better known strange quark mass from lattice QCD make precision tests of predictive texture models possible. The models tested include those hierarchical N-zero textures classified by Ramond, Roberts and Ross, as well as any other hierarchical matrix Ansatz with non-zero 12 = 21 and vanishing 11 and 13 elements. We calculate the maximally allowed value for sin 2 beta in these models and show that all the aforementioned models with vanishing 11 and 13 elements are ruled out at the 3 sigma level. While at present sin 2 beta and |Vub/Vcb| are equally good for testing N-zero texture models, in the near future the former will surpass the latter in constraining power.Comment: 1+20 pages, 2 figures, JHEP3 clas

    Development of an Aerodynamic Analysis Method and Database for the SLS Service Module Panel Jettison Event Utilizing Inviscid CFD and MATLAB

    Get PDF
    This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event

    Photometric Monitoring of Open Clusters I. The Survey

    Full text link
    Open clusters, which have age, abundance, and extinction information from studies of main-sequence turn off stars, are the ideal location in which to determine the mass-luminosity-radius relation for low-mass stars. We have undertaken a photometric monitoring survey of open clusters in the Galaxy designed to detect low-mass eclipsing binary systems through variations in their relative light curves. Our aim is to provide an improved calibration of the mass-luminosity-radius relation for low-mass stars and brown dwarfs, to test stellar structure and evolution models, and to help quantify the contribution of low-mass stars to the global mass census in the Galaxy. In this paper we present our survey, describing the data and outlining the analysis techniques. We study six nearby open clusters, with a range of ages from ∼0.2\sim 0.2 to 4 Gyr and metallicities from approximately solar to -0.2dex. We monitor a field-of-view of > 1 square degree per target cluster, well beyond the characteristic cluster radius, over timescales of hours, days, and months with a sampling rate optimised for the detection of eclipsing binaries with periods of hours to days. Our survey depth is designed to detect eclipse events in a binary with a primary star of \lesssim 0.3~M_{\sun}. Our data have a photometric precision of ∼3\sim 3 mmag at I≈16I\approx 16.Comment: 50 pages, 18 figures, accepted for publication in A
    • …
    corecore